Inorg. Chem. **2007**, 46, 896−906

Synthesis, Reactivity, Spectroscopic Characterization, X-ray Structures, PGSE, and NOE NMR Studies of (*η***5-C5Me5)-Rhodium and -Iridium Derivatives Containing Bis(pyrazolyl)alkane Ligands**

Claudio Pettinari,*,† Riccardo Pettinari,*,† Fabio Marchetti,† Alceo Macchioni,§ Daniele Zuccaccia,§ Brian W. Skelton,‡ and Allan H. White‡

*Dipartimento di Scienze Chimiche, Uni*V*ersita*` *di Camerino, Via S. Agostino 1, 62032 Camerino, Italy, Dipartimento di Chimica, Uni*V*ersita*` *di Perugia, Via Elce di Sotto, 8-06123 Perugia, Italy, Chemistry M313, The Uni*V*ersity of Western Australia, Crawley, Western Australia 6009, Australia*

Received October 9, 2006

Rhodium(III) and iridium(III) complexes containing bis(pyrazolyl)methane ligands ($pz = pyrazole$, L' in general; specifically, $L^1 = H_2C(pz)$, $L^2 = H_2C(pz^{Me})$, $L^3 = H_2C(pz^{4Me})$, $L^4 = Me_2C(pz)$, have been prepared in a study exploring the reactivity of these ligands toward $[Cp^*MC](\mu$ -Cl)₂ dimers (M = Rh, Ir; Cp^{*} = pentamethylcyclopentadienyl). When the reaction was carried out in acetone solution, complexes of the type [Cp*M(L′)Cl]Cl were obtained. However, when L¹ and L² ligands have been employed with excess $[Cp^*MCl](\mu\text{-}Cl)]_2$, the formation of $[Cp^*MCl]^2$ Cl][Cp*MCl₃] species has been observed. PGSE NMR measurements have been carried out for these complexes, in which the counterion is a cyclopentadienyl metal complex, in $CD₂Cl₂$ as a function of the concentration. The hydrodynamic radius (r_H) and, consequently, the hydrodynamic volume (V_H) of all the species have been determined from the measured translational self-diffusion coefficients (D_i) , indicating the predominance of ion pairs in solution. NOE measurements and X-ray single-crystal studies suggest that the [Cp*MCl₃]= approaches the cation, orienting the three CI-legs of the "piano-stool" toward the CH₂ moieties of the bis(pyrazolyl)methane ligands. The reaction of 1 equiv of $[Cp^*M(L')C][C]$ or $[Cp^*M(L')C][[Cp^*MCl_3]$ with 1 equiv of AgX (X = ClO₄ or CF₃SO₃) in CH₂Cl₂ allows the generation of [Cp*M(L′)Cl]X, whereas the reaction of 1 equiv of [Cp*M(L′)Cl] with 2 equiv of AgX yields the dicationic complexes $[Cp^*M(L')(H_2O)][X]_2$, where single water molecules are directly bonded to the metal atoms. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. The reaction of $[Cp^*Ir(L')(H_2O)][X]_2$ with ammonium formate in water or acetone solution allows the generation of the hydride species [Cp*lr(L')H][X].

Introduction

Since the first syntheses of poly(pyrazolyl)borates by Trofimenko in 1966 ,¹ over two thousand publications have appeared describing the syntheses and applications of bis- (pyrazolyl)borate ligands in various areas of chemistry.2 Adducts of bis(pyrazolyl)alkanes remain less studied because of greater difficulties encountered in the preparation of large quantities of these N_2 -donor species.³ These bidentate ligands

† Universita degli Studi di Camerino.

(1) Trofimenko, S. *J. Am. Chem. Soc.* **1966**, *88*, 1842.

are less rigid than some other bidentate ligands such as 2,2′ bipyridine (bpy) or 1,10-phenanthroline. In addition, because of the aromatic rings, they are likely to give more stable adducts than the most commonly used aliphatic diamines such as ethylenediamine. In the literature, the first rhodium- (I) complexes containing the ligand $H_2C(pz)_2$ were reported by Oro and co-workers.⁴ Rh(I) derivatives containing H_2C - $(pz^{Me2})_2$ can be used as catalysts in the hydroformylation and hydroaminomethylation of olefins.⁵ Ir(1,5-cyclooctadiene) $*$ To whom correspondence should be addressed. E-mail: and Ir(CO)₂ derivatives containing L¹ and L² have been

claudio.pettinari@unicam.it (C.P.); riccardo.pettinari@unicam.it (R.P.).

[§] Universita` di Perugia.

[‡] University of Western Australia.

⁽²⁾ Trofimenko, S. *Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands*; Imperial College Press: London, 1999.

^{(3) (}a) Pettinari, C.; Pettinari, R. *Coord. Chem. Re*V*.* **²⁰⁰⁵**, *²⁴⁹*, 525. (b) Pettinari, C.; Pettinari, R. *Coord. Chem. Rev.* **2005**, 249, 663.
(4) Oro, L. A.; Esteban, M.; Claramunt, R. M.; Elguero, J.; Foces-Foces,

C.; Hernandez, Cano, F. *J. Organomet. Chem.* **1984**, *276*, 79.

⁽⁵⁾ Teuma, E.; Loy, M.; Le Berre, C.; Etienne, M.; Daran, J.-C.; Kalck, P. *Organometallics* **2003**, *22*, 5261.

synthesized, characterized, and demonstrated to be effective catalysts for the alcoholysis of a range of alcohols and hydrosilanes, including secondary and tertiary hydrosilanes, under mild conditions.⁶

As an extension of our previous work on Cp*Rh(III)- and $Cp*Ir(III)$ -scorpionates,⁷ we have undertaken a systematic study of the reactions between $[Cp^*MCl(\mu-Cl)]_2$ dimers (M $=$ Rh, Ir) and bis(pyrazolyl)alkane $(R_2C)_n$ (pz')₂ ligands. Several studies have been reported describing the molecular structures of $[Cp*Rh(N-N)X]^{n+}$ systems, as interesting catalytic precursors, and it has been proposed that catalytic activity depends on the chelate ring conformation, metalligand bond distances, and interbond angles. However, to date, structural information is limited to complexes containing bipyridine-type ligands that generate five-membered chelate rings.⁸

 $[Cp*Rh(bpy)(H_2O)]^{2+}$ has been demonstrated to be a versatile tool for efficient nonenzymatic regeneration of oxidoreductase coenzymes such as $NAD(P)H$, $NAD(P)⁺$, and $FADH₂$.⁹ [Cp*Rh(bpy)H]⁺, generated in situ from [Cp*Rh- $(bpy)(H_2O)$ ²⁺ and sodium formate,^{10,11} can be considered to be a biomimetic enzymatic hydride via its ability to bind and regioselectively transfer a hydride in the 4-ring-position of the NAD^+ model.¹² Here we report the syntheses and spectral and structural characterization of a number of complexes containing the $Cp*M$ synthons ($M = Rh$ and Ir) with various bis(pyrazolyl)alkanes which are able to form six-membered chelate rings. The reactivity of some species toward PPh₃ and ammonium formate has been investigated. $[Cp*Ir(L')H]^+$ hydride formation has been found be independent of the pH value and solvent employed.

Since it is well-recognized that ion-pairing drastically affects the reactivity and structure of ionic organometallics,¹³ we also considered it to be of interest to investigate the interionic solution structures of the complexes $[Cp^*M(L^1)Cl]^+$ -[Cp*MCl3]-, which possess an unusual organometallic counterion. (By "interionic structure", we mean both the relative anion-cation position, determined by NOE (nuclear Overhauser effect) NMR experiments, $14-16$ and the level of aggregation, estimated by the PGSE (pulsed-field gradient spin echo) NMR technique).^{17,18} This work is reported herein.

Results and Discussion

Synthesis and Spectroscopic Characterization of Complexes 1–21. The complexes $[Cp*M(L')Cl][Cp*MCl_3]$ (1

- (6) Field, L. D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W. *Organometallics* **2003**, *22*, 2387.
- (7) Carmona, E.; Cingolani, A.; Marchetti, F.; Pettinari, C.; Pettinari, R.; Skelton, B. W.; White, A. H. *Organometallics* **2003**, *22*, 2820.
- (8) (a) Ogo, S.; Uehara, K.; Abura, T.; Watanabe, Y.; Fukuzumi, S. *J. Am. Chem. Soc.* **2004**, *126*, 16520. (b) Ogo, S.; Hayashi, H.; Uehara, K.; Fukuzumi, S. *Appl. Organomet. Chem.* **2005**, *19*, 639.
- (9) Hollmann, F.; Witholt, B.; Schmid, A. H. *J. Mol. Catal. B: Enzym.* **²⁰⁰³**, *¹⁹*-*20,* 167.
- (10) Kaim, W.; Reinhardt, R.; Greulich, S.; Fiedler, J. *Organometallics* **2003**, *22*, 2240.
- (11) Ogo, S.; Makihara, N.; Kaneko, Y.; Watanabe, Y. *Organometallics* **2001**, *20*, 4903.
- (12) Lo, H. C.; Leiva, C.; Buriez, O.; Kerr, G. B.; Olmstead, M. M.; Fish, R. H. *Inorg. Chem.* **2001**, *40*, 6705.
- (13) Macchioni, A. *Chem. Re*V*.* **²⁰⁰⁵**, *¹⁰⁵*, 2039.

 $M = Rh, L' = L¹; 3 M = Ir, L' = L¹; 5 M = Rh, L' = L²;$
 7 M = Ir, I' = I²) have been prepared from the reactions **7** M = Ir, $L' = L^2$) have been prepared from the reactions of equivalent quantities of $[Cr^*MC]$ (*C*)), dimers and his of equimolar quantities of $[Cp*MCl(\mu-Cl)]_2$ dimers and bis-(pyrazolyl)methane ligands L^1 and L^2 , in THF, under N_2 streams (Chart 1). The formation of the anion $[Cp^*MCl_3]$ is rather unusual, as recently described by Severin and coworkers, who attribute the formation of the anion in [Cp*Ru- $(C_6H_6)[[Cp*RhCl_3]$ to the generation of the cationic $[Cp*Ru (C_6H_6)$ ⁺ moiety.¹⁹ In contrast, in our compounds, the driving force is more likely to be the ligand conformation and the number and nature of the substituents on the heterocyclic ligands. Analogous $[Cp^*M(bpy)Cl][Cp^*MCl_3]$ bpy-containing species have not yet been reported. Under the same conditions analogous compounds cannot be obtained by using L^3 and L^4 , even if a large excess of $[Cp*MCl(\mu-Cl)]_2$ is employed. On the other hand, when L^1 , L^2 , L^3 , and L^4 react with $[CP^*MCl(\mu$ -Cl)₂ in acetone, $[CP^*M(L')Cl]Cl$ complexes $(2 M = Rh, L' = L^1; 4 M = Ir, L' = L^1; 6 M = Rh,$
 $I' = I^2$, $8 M = Ir, I' = I^2$, $9 M = Rh, I' = I^3$, $10 M =$ $L' = L^2$; **8** M = Ir, $L' = L^2$; **9** M = Rh, $L' = L^3$; **10** M =
Ir, $L' = L^3$, **11** M = Ir, $L' = L^4$) have been prepared (Chart Ir, $L' = L^3$; **11** M = Ir, $L' = L^4$) have been prepared (Chart
1) In this solvent, no evidence of $[Cr^*MCl_2]$ formation 1). In this solvent, no evidence of $[Cp*MCl₃]⁻$ formation, as in **1**, **3**, **5**, and **7**, is found.

Complexes **¹**-**¹¹** are stable both in the solid and solution states. Under an inert atmosphere, their solutions are stable indefinitely. IR (nujol) and NMR solution data $(CDCl₃)$ are consistent with the η^5 -Cp^{*} and κ^2 -L coordinations confirmed by single-crystal X-ray studies, with a doublet in the 13C- {1 H} NMR spectra of the rhodium derivatives in the range of 88–97 ppm $(J(^{13}C - ^{103}Rh) \approx 8 Hz)$, indicative of η^5 -Cp^{*}
binding Jn the IP spectra J/M –Cl\\rights between 260 and binding. In the IR spectra, *^ν*(M-Cl) fall between 260 and 280 cm^{-1} , in accordance with the presence of single M-Cl
bonds. Two sets of signals in the ¹H spectra attributable to bonds. Two sets of signals in the ¹H spectra, attributable to the Cp* protons, are always detected in the spectra of **1**, **3**, **5**, and **7**, in accordance with the existence in solution of the two ionic forms. When the ¹H NMR spectra of $[Cp*M(L')]$ - Cl [$Cp*MCl₃$] were measured in acetone, the immediate formation of $[Cp*M(L')Cl]Cl$ was observed.

It is interesting to note that the $[Cp*M(L')Cl]Cl$ compounds can be obtained by the reaction of [Cp*M(L′)Cl]- [Cp^{*}MCl₃] with excess L' (L' = L¹ or L², solvent = THF)
(eq. 1). On the other hand, the addition of the dimen (eq 1). On the other hand, the addition of the dimer

- (15) (a) Beck, S.; Geyer, A.; Brintzinger, H.-H. *Chem. Commun.* **1999**, 2477. (b) Zuccaccia, C.; Stahl, N. G.; Macchioni, A.; Chen, M.-C.; Roberts, J. A.; Marks, T. J. *J. Am. Chem. Soc.* **2004**, *126*, 1448.
- (16) Zuccaccia, D.; Sabatini, S.; Bellachioma, G.; Cardaci, G.; Clot, E.; Macchioni, A. *Inorg. Chem.* **2003**, *42*, 5465.
- (17) (a) Valentini, M.; Ru¨egger, H.; Pregosin, P. S. *Hel*V*. Chim. Acta.* **²⁰⁰¹**, *84*, 2833. (b) Pregosin, P. S.; Martinez-Viviente, E.; Kumar, P. G. A. *Dalton Trans.* **2003**, 4007. (c) Bagno, A.; Rastrelli, F.; Saielli, G. *Prog. Nucl. Magn. Reson. Spectrosc.* **2005**, *47*, 41. (d) Brand, T.; Cabrita, E. J.; Berger, S. *Prog. Nucl. Magn. Reson. Spectrosc.* **2005**, *46*, 159. (e) Cohen, Y.; Avram, L.; Frish, L. *Angew. Chem., Int. Ed.* **2005**, *44*, 520. (f) Pregosin, P. S.; Kumar, P. G. A.; Ferna´ndez, I. *Chem. Re*V. **2005**, *105*, 2977.
- (18) Zuccaccia, D.; Macchioni, A. *Organometallics* **2005**, *24*, 3476.
- (19) Quebatte, L.; Scopelliti, R.; Severin, K. *Eur. J. Inorg. Chem.* **2006**, 231.

^{(14) (}a) Macchioni, A. *Eur. J. Inorg. Chem.* **2003**, 195*.* (b) Binotti, B.; Macchioni, A.; Zuccaccia, C.; Zuccaccia, D. *Comments Inorg. Chem.* 2002, 23, 417. (c) Macchioni, A. In *Perspectives in Organometallic Chemistry;* Screttas, C. G., Steele, B. R., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 2003; pp 196-207.

16: M = Rh, R = R' = R" = H, X = O₃SCF 17: M = Ir. R = Me. R = R = H. X = O SCF **18**: M = Rh, R = Me, R' = R" = H, X = O_3 SCF₃ **19:** M = Ir, R = Me, R' = R" = H, X = O_3 SCF₃ 20: M = Rh, R = R' = R" = H, X = CIO₄

21: $[X^2] = CI$, O₃SCF₃

2: $M = Rh, R = R' = R'' = H, X = Cl$ 4: M = Ir, R = R' = R" = H, X = CI 6: $M = Rh$, $R = R'' = H$, $R' = Me$, $X = Cl$ 8: M = Ir, R = R" = H, R' = Me, $X = CI$ 9: M = Rh, R = R' = H, R" = Me, X = Cl **10:** M = Ir, R = R' = H, R" = Me, X = CI
11: M = Ir, R' = R" = H, R = Me, X = CI **12:** M = Rh, R = R' = R" = H, X = O_3 SCF₃ 13: M = Rh, R = Me, R' = R" = H, X = O₃SCF₃
14: M = Rh, R = Me, R' = R" = H, X = O₃SCF₃
15: M = Ir, R = Me, R' = R" = H, X = O₃SCF₃

 $[Cp*MCl(\mu-Cl)]_2$ to $[Cp*M(L')Cl]Cl$ yields $[Cp*M(L')Cl]$ -[$Cp*MCl_3$] ($L' = L^1$ or L^2 , solvent = THF) (eq 2)

 $[Cp*M(L')Cl][Cp*MCl_3] + L \rightarrow 2[Cp*M(L')Cl]Cl$ (1)

 $[Cp^*M(L')Cl]Cl + \frac{1}{2}[Cp^*MCl(\mu-Cl)]_2 \rightarrow$ $[Cp*ML'C][Cp*MCl_3]$ (2)

Compounds $12-15$ [Cp*M(L')Cl][CF₃SO₃] ($12 M = Rh$, $L' = L^1$; **13** M = Rh, $L' = L^2$; **14** M = Rh, $L' = L^4$; **15** M
= Ir $L' = L^4$; have been prepared in one-pot syntheses by $=$ Ir, $L' = L⁴$) have been prepared in one-pot syntheses by
mixing equippedgr quantities of the $[Cr*MC](u, C)$), dimers mixing equimolar quantities of the $[Cp*MCl(\mu-Cl)]_2$ dimers and the N₂-donor ligand $L⁴$, followed by the addition of the silver salt. Compounds **¹²**-**¹⁵** can also be prepared by the reaction between equimolar quantities of the [Cp*M(L′)Cl]- Cl species and silver triflate. These species, which are air and solution stable, are readily soluble in polar solvents. The substitution of only one chloride group is supported by the

presence of the M-Cl stretching frequency in their IR spectra and by the characteristic absorption in the $1200-1000$ cm⁻¹ regions, attributable to an ionic $SO₃CF₃$ group.

In the ¹H-NMR spectra of $1-10$, 12, and 13, the bridging
minal methylene protons $(1 \tbinom{1}{2} 1)^2$ and $(1 \tbinom{3}{2}$ derivatives) are geminal methylene protons $(L¹, L²,$ and $L³$ derivatives) are diastereotopic and appear as two doublets arising from a wellresolved AX system. In addition, in the spectra of **11**, **14**, and 15 ($L⁴$ derivatives), the two anisochronous methyl groups appear as two singlets.

The ¹H-NOESY spectrum of complex 5 (Figure 1) shows strong dipolar interactions between the CH^{up} and Me^{Cp*} protons and between CH^{down} and Me⁵ protons, with intensities comparable to those of the interactions between $Me⁵$ (or $Me³$) with H⁴. By contrast, no dipolar interactions are present between the CH^{up} and Me⁵ protons and between the CH^{down} and $\text{Me}^{\text{Cp*}}$ protons. These observations are consistent with the preferential presence in solution of the boat conformer shown in Figure 1. In this conformation, the pyrazolyl rings

Figure 1. Section of ¹H-NOESY NMR spectrum (400.13 MHz, 296 K, CD_2Cl_2 , mixing time $= 800$ ms) of complex **5**. On the top, the two boat and chair conformations of the metallacycle $M(N-N)_{2}C$ are depicted with the expected NOEs between CH^{up} (and CH^{down}) and Me⁵ (and Me^{Cp*}). The asterisk $(*)$ denotes the resonance of H_2O .

are positioned far away from the encumbered Cp*. The same conformation of the metallacycle $M(N-N)_2C$ is observed in the solid state for all complexes studied.

Upon warming of methanol or chloroform solutions of complexes **¹**-**¹⁵** to 331 K, no changes were observed in the 1 H $-$ NMR spectra, suggesting that they are very rigid
molecules^{20,21} in which the inversion of the metal center is molecules $20,21$ in which the inversion of the metal center is very slow on the NMR scale.²²

Finally, compounds $16-19$, $[Cp*M(L')(H_2O)][CF_3SO_3]_2$ $(16 M = Rh, L' = L^1; 17 M = Ir, L' = L^2; 18 M = Rh, L'$
= $I^4: 19 M = Ir, I' = I^4$ which contain two triflate jons $= L⁴;$ **19** M $=$ Ir, $L' = L⁴$, which contain two triflate ions
and one water molecule bonded to the $Cn[*]M$ moiety and one water molecule bonded to the Cp*M moiety (confirmed by X-ray and IR data), can be obtained in two different ways: (i) by mixing 1 equiv of $[Cp*MC](\mu-C)$]₂ with 2 equiv of N_2 -donor ligands and 4 equiv of the silver salt and (ii) by the reaction of compounds **12**, **14**, and **15** with excess of the silver triflate. The presence of adventitious water can be attributed to the not rigorously anhydrous solvents employed for the recrystallization of **¹⁶**-**19**.

Compound **20** has been prepared with the same procedure reported for **¹⁶**-**19**, but with silver(I) perchlorate.

It is interesting to note that in 16 and $18-20$, the CH₃ or $CH₂$ protons of the methylene chain appear at room tem-

⁽²¹⁾ Cinellu, M. A.; Stoccoro, S.; Minghetti, G, Bandini, A. L.; Banditelli, G.; Bovio, B. *J. Organomet. Chem.* **1989**, *372*, 311.

Figure 2. ¹H NMR spectrum (D₂O solution) of a mixture of 19 and HCOONH₄ in 1:3 molar ratio at 296 K (pH \approx 7).

perature as sharp singlets, suggesting that the inversion of the metal center for the dicationic water complexes is fast on the NMR scale, in accordance with the literature.²³ However, when the acetone solutions of **16** and **20** are cooled down to 210 K, two doublets from the resolved AB system appear, whereas in the case of **18** and **19**, two sharp signals are evident at 253 Κ. No change has been observed until 213 K.

We have also observed that compounds **17** and **19**, soluble in water, react with ammonium formate, in the absence of reducible substrates, in water or acetone solution indifferently, yielding the hydride complex $[Cp*Ir(L')H]^{+}$ (Figure 2), presumably through a *â*-hydrogen elimination with evolution of $CO₂$, in accordance with the literature.^{11,12} It is interesting to note that in our case hydride generation occurs in the pH range of $3-7$, independently of the solvent choice, whereas the amount of hydride formation depends on the ligand choice, the higher quantity being formed when the L4 derivative **19** is employed.

When 13 reacts with an equimolar quantity of PPh₃, displacement of the chloride ligand from the Rh coordination sphere is observed, with the formation of the dicationic [Cp*Rh(L2)PPh3][Cl][SO3CF3] compound **21**. The 31P NMR spectrum of **21** indicates coordination in solution of the P donor, the Rh-P coupling constant being similar to those reported for analogous Rh(III) species.24

NOE and PGSE NMR Measurements. The interionic structures in solutions of compounds **5** and **13** were studied by combining the information derived from NOE (nuclear Overhauser effect)²⁵ and PGSE (pulsed-field gradient spinecho)²⁶ NMR experiments.

The relative anion-cation orientations in solution for complexes **5** and **13** ($[Cp*Rh(L^2)Cl][X]$) were investigated by recording ¹⁹F,¹H-HOESY (X^- = $CF_3SO_3^-$) and ¹H-NOESY (X^- = $ICn*RbCl_3$) NMR spectra at room tem-NOESY (X^- = [Cp*RhCl₃]⁻) NMR spectra at room temperature (296 K) in CD_2Cl_2 .

For complex **13**, strong interionic NOE contacts were observed between the fluorine atoms of $CF₃SO₃⁻$ and the

- (24) Pettinari, C.; Marchetti, F.; Pettinari, R.; Pizzabiocca, A.; Drozdov, A.; Troyanov, S. I.; Vertlib, V. *J. Organomet. Chem.* **2003**, *688*, 216.
- (25) Neuhaus, D.; Williamson, M. *The Nuclear O*V*erhauser Effect in Structural and Conformational Analysis*, 2nd ed; WILEY-VCH: Chichester, U.K., 2000.
- (26) (a) Hahn, E. L. *Phys. Re*V*.* **¹⁹⁵⁰**, *⁸⁰*, 580. (b) Stejskal, E. O; Tanner, J. E. *J. Chem. Phys.* **1965**, *42*, 288. (c) Stilbs, P. *Prog. Nucl. Magn. Reson. Spectrosc.* **1987**, *19*, 1. (d) Price, W. S. *Concepts Magn. Res.* **1997**, *9*, 299. (e) Price, W. S. *Concepts Magn. Reson.* **1998**, *10*, 197. (f) Johnson, C. S., Jr. *Prog. Nucl. Magn. Res. Spectrosc.* **1999**, *34*, 203.

^{(22) (}a) Brunner, H. *Angew. Chem.* **1999**, *111*, 1248. (b) Brunner, H.; Zwack, T. *Organometallics* **2000**, *19*, 2423. (c) Brunner, H. *Eur. J. Inorg. Chem.* **2001**, 905.

^{(23) (}a) Asano, H.; Katayama, K.; Kurosawa, H. *Inorg. Chem.* **1996**, *35*, 5760. (b) Davies, D. L.; Fawcett, J.; Garratt, S. A.; Russell, D. R. *Organometallics* **2001**, *20*, 3029.

Figure 3. Section of 19F-1H-HOESY NMR spectrum (400.13 MHz, 296 K, CD_2Cl_2 , mixing time $= 800$ ms) of complex 13. The asterisk (*) denotes the resonance due to a residue of non-deuterated solvent.

Me5 protons (Figure 3). Medium-sized NOEs were also detected with the Me^{Cp*} resonance, while weak NOEs were observed with the $CH₂$ resonance. The anion did not show any interaction with $Me³$ and $H⁴$. All these observations indicate that the $CF_3SO_3^-$ group lies close to the CH_2 moiety, between the two methyl groups in position 5 (Figure 3), as previously observed for octahedral $Ru(II)^{27}$ and square-planar $Pd(II)$ and $Pt(II)²⁸$ complexes. In this position, the anion also has a dipolar interaction with the methyl groups of Cp^* (Figure 3).

This single cation-anion orientation in solution deduced by NOE studies is consistent with that in the solid state. X-ray investigations of complexes containing Cl^- as counterion indicate that the cation lies close to two anions in the solid state (see below). Both anions are adjacent to the bis- (pyrazolyl)methane ligands, near to the $CH₂$ -moiety and well removed from the chlorine ligand. The distances between the chloride anions and the methylene carbons are calculated

Table 1. Diffusion Coefficients $(D_t, \times 10^{10} \text{ m}^2 \text{ s}^{-1})$, Hydrodynamic Radii (r_H, \AA) , Hydrodynamic Volumes (V_H, \AA^3), and Aggregation Numbers (N) for Compounds 5 and 13 in CD₂Cl₂ as a Function of Concentration (*C*, mM)

entry	D_{t} ⁺	D_{t}	$r_{\rm H}^+$	$r_{\rm H}^-$	$V_{\rm H}$ ⁺	V_H^-	N^+	N^-	C
5									
1	10.7	11.0	5.2	5.0	575	533	1.0	0.9	0.008
2	10.6	10.6	5.3	5.3	600	600	1.0	1.0	0.1
3	9.6	10.3	5.6	5.3	720	610	1.2	1.0	1.4
4	9.3	9.7	5.6	5.4	720	649	1.2	1.1	4.2
5	9.0	9.5	5.7	5.4	755	670	1.3	1.1	8.5
6	8.5	9.0	5.7	5.5	771	694	1.3	1.2	31
13									
7	10.7	12.7	5.0	4.4	540	364	1.2	0.8	0.05
8	10.3	11.3	5.3	4.9	627	502	1.4	1.1	0.6
9	10.1	10.2	5.4	5.3	652	630	1.5	1.4	3.5
10	9.8	10.2	5.5	5.3	681	623	1.6	1.4	7.2
11	9.6	10.0	5.5	5.3	674	616	1.6	1.4	30.0

to lie in the range of $3.3-3.7$ Å and indicate the presence of electrostatic C-H^{δ+}····Cl^{δ-} interactions²⁹ (cf. the X-ray work, below). For complex 5 , containing the $[Cp*RhCl_3]$ ⁻ counterion, the ¹H-NOESY NMR spectrum does not show any interionic dipolar interactions between the Me^{Cp*} resonance of the anion and the cationic protons. This suggests that the [Cp*RhCl3]- species approaches the cation orienting the three Cl legs of the "piano-stool" toward the cation and, plausibly, toward the $CH₂$ -moiety of the cation where the positive charge is mainly accumulated.^{27,28} Again, this orientation is consistent with that found in the solid state where the organometallic anion that is closest to the cation orients the three chlorines toward the methylene carbon (Figure 4). The distances between the chlorine legs and the methylene carbons are in the range of $3.3-4.0$ Å, establishing in this case also the $C-H^{\delta+}\cdots Cl^{\delta-}$ interaction.

¹H- and ¹⁹F-PGSE NMR experiments were carried out for complexes 5 and 13 in CD_2Cl_2 using TMSS as internal standard (TMSS $=$ [tetrakis-(trimethylsilyl)silane]). PGSE measurements allowed the translational self-diffusion coefficients (D_t) for both cationic (D_t^+) and anionic (D_t^-) moieties (Table 1) to be determined. By applying (see the Experimental Section) the Stokes-Einstein equation $D_t = kT/$ $c\pi\eta r_{\text{H}}$, where *k* is the Boltzman constant, *T* is the temperature, *c* is a numerical factor,¹⁸ and η is the solution viscosity, the average hydrodynamic radii for the anionic (r_H^+) and cationic (r_{H}^{-}) moieties were measured (Table 1). Their hydrodynamic volumes (V_H) were obtained from r_H , assuming the aggregates to have a spherical shape. From the ratio between V_H and the Van der Waals (V_{VdW}) volumes of the ion pairs, known from the solid state (Experimental Section), the cationic (N^+) and anionic (N^-) aggregation numbers were evaluated (Table 1). Because, a distribution of ionic species is present in solution, N^+ and N^- indicate the apparent average aggregation number of the ionic moieties. For example, if they are both equal to 1 or 2, this means that either ion pairs or ion quadruples, that is, $(Ru^+X^-)_2$, are the predominant species in solution, respectively. On the other hand, if N^+ , N^- , or both are lower than 1, then free ions are

^{(27) (}a) Bellachioma, G.; Cardaci, G.; Macchioni, A.; Reichenbach, G.; Terenzi, S. *Organometallics* **1996**, *15*, 4349. (b) Macchioni, A.; Bellachioma, G.; Cardaci, G.; Gramlich, V.; Rüegger, H.; Terenzi, S.; Venanzi, L. M. *Organometallics* **1997**, *16*, 2139. (c) Macchioni, A.; Bellachioma, G.; Cardaci, G.; Cruciani, G.; Foresti, E.; Sabatino, P.; Zuccaccia, C. *Organometallics* **1998**, *17*, 5549. (d) Zuccaccia, C.; Bellachioma, G.; Cardaci, G.; Macchioni, A. *J. Am. Chem. Soc.* **2001**, *123*, 11020.

⁽²⁸⁾ Binotti, B.; Bellachioma, G.; Cardaci, G.; Macchioni, A.; Zuccaccia, C.; Foresti, E.; Sabatino, P. *Organometallics.* **2002**, *21*, 346.

^{(29) (}a) Steiner, T. *Angew. Chem., Int. Ed.* **2002**, *41*, 48. (b) Jeffrey, G. A. *An Introduction to Hydrogen Bonding*; Oxford University Press: Oxford, U.K., 1997.

Figure 4. Anion-cation orientations in the solid state for compound **⁷** (Projection quasi-normal to the crystallographic mirror plane).

Table 2. Metal Atom Environments (bond distances, Å, and angles, deg)

atom/M/X	4/Ir/C1	6.2H ₂ O/Rh/Cl	15/Ir/Cl	16/Rh/OH ₂	18/Rh/OH ₂
$M-N(12)$	2.053(7)	2.131(2)	2.083(5)	2.115(2)	2.118(4)
$M-N(22)$	2.073(7)	2.124(2)	2.083(6)	2.118(1)	2.114(3)
$M-Ar(cp)$	2.108(8)	2.155(2)	2.138(7)	2.127(2)	2.138(4)
	$-2.172(8)$	$-2.176(2)$	$-2.168(8)$	$-2.172(2)$	$-2.159(3)$
$\langle \ \rangle$	2.14(2)	2.167(9)	2.153(11)	2.15(2)	2.150(9)
$M - Ar(0)$	1.76σ	1.78_{4}	1.77σ	1.76 ₃	1.76 ₈
$M-X$	2.383(2)	2.4136(6)	2.401(2)	2.185(1)	2.172(3)
$X-M-N(12)$	85.9(2)	87.57(4)	83.8(2)	83.88(5)	81.0(1)
$X-M-N(22)$	87.0(2)	87.86(6)	84.2(2)	81.54(5)	81.7(1)
$X-M-Ar(0)$	128.4	124.5	$123_{.6}$	129.2	127.7
$N(12)-M-N(22)$	82.9(3)	86.49(7)	86.1(2)	87.31(5)	86.3(1)
$N(12)-M-Ar(0)$	126.9	128.5	$131_{.8}$	129.1	131.5
$N(22) - M - Ar(0)$	130.3	128.4	130.9	129.3	130.6

present in solution. If only free ions were present in solution, *N*⁺ and *N*- should be 0.60 and 0.40 for **5** and 0.84 and 0.16 for **13**. PGSE NMR data reported in Table 1 clearly indicate that complexes 5 and 13 are mainly present in CD_2Cl_2 as ion pairs even at micromolar concentration (entries 1 and 7). These findings suggest that, in addition to the electrostatic forces, specific $C-H^{\delta+\cdots}X^{\delta-}$ (X = O for complex 13 and Cl for complex **5**) interactions occur in solution as previously described.28 In addition, an increase of the salt concentration causes further aggregation with the formation of aggregates higher than that of ion pairs (entries 6 and ⁹-11);16 the tendency seems less in compound **⁵**, compared to compound **13**.

Crystal Structures. A number of the present molecular geometries for all complexes studied, except **5**, **7**, and the dichloromethane solvate of **6** (which, for the cations, may be regarded as represented by more precisely determined similar (or identical) species), are presented in Table 3. In **5**, in the $[CP*RhCl₃]⁻$ counterion, which, like the cation, lies on a crystallographic mirror plane, Rh-Cl distances are 2.421(4) and 2.428(3) $(\times 2)$ Å with the Rh-Cp (centroid) being 1.76₅ Å; the Cp (centroid)-Rh-Cl angles range between $121.73(7)$ and $126.3(1)$ °, with Cl-Rh-Cl being 90.0(1) $(\times 2)$ and 92.8(1)°, harmonious with the values of ref 19. In 7 , in the anion, the Ir-Cl distances are $2.427(6)$ and 2.427(5) (\times 2) Å, with Ir-Cp (centroid) being 1.76₃ Å; the Cp (centroid)-Ir-Cl angles range between 125.75(9) and $127.5(2)°$ with Cl-Ir-Cl being 89.4(2) and 87.8(2)° $(\times 2)$. For the most precisely determined $[Cp^*M(L')Cl]^+$ cations of **6** and **15**, the values of Table 3 differ little from those of the neutral counterpart molecules of the scorpionates of ref 7; in **16** and **18**, where the X ligand is aqua, the exchange appears to have little impact on the remainder of the coordination environment. In **16**, in particular, there are interesting hydrogen-bonding interactions with the oxygen atoms of the triflate anions (Figure 5).

In 4 , 6 ^{\cdot} $2H_2O$, 15 , 16 , and 18 \cdot $3H_2O$, a single formula unit, devoid of crystallographic symmetry, comprises the asymmetric unit of the structure. In **4**, with water molecule hydrogen atoms postulated from difference map evidence, we find that in projection down *a*, as set, the anions and solvent molecules comprise a well-defined ribbon down the center of the cell (Cl(2) \cdots O(1), H(1a); O(1), H(1a)(\bar{x} , \bar{y} , \bar{z}) 3.170(7), 2.7 (est (estimated); 3.216(7), 2.7 Å (est)) bounded by columns of cations. There are contacts to the $CH₂$ hydrogen atoms of the L' ligands (Cl(2) \cdots C(0), H(0a), H(0b) $(\bar{x}, \bar{y}, \bar{z})$ 3.565(9), 2.7 Å (\times 2)), although there are stronger interactions to either side with the pyrazole ring hydrogen atoms. Compounds **5** and **7** are "isomorphous", with "disorder" being resolvable in the former but not the latter. Cations and anions approach each other pairwise as depicted in Figure 4; for 7 , the $Cl₃$ component of the anion embraces the $CH₂$ bridge of the cation. In the better-defined Ir complex, **7**, C(10), H(101,102) \cdots Cl(22) are 3.35(2), 3.0,

Table 3. Crystal/refinement Data

	$4 \cdot H_2 O^a$	5	6.2H ₂ O ^b	$6.1/2CH_2Cl_2$	7	15	18.3H ₂ O	$16*$
formula							$C_{17}H_{25}Cl_2$ IrN4O $C_{31}H_{46}C_{14}N_4Rh_2$ $C_{21}H_{35}Cl_2N_4O_2Rh$ $C_{21,5}H_{32}Cl_3N_4Rh$ $C_{31}H_{46}Cl_4Ir_2N_4$ $C_{20}H_{27}ClF_3IrN_4O_3$ $C_{21}H_{35}F_6N_4O_{10}RhS2$ $C_{19}H_{25}F_6N_4O_7RhS_2$	
$M_{\rm r}$ (Da)	564.6	822.4	549.3	555.8	1000.9	688.2	784.6	702.5
cryst syst	triclinic	monoclinic	monoclinic	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	P1 (No. 2)	$P2_1/m$ (No. 11)	$P2_1/n$ (No. 14)	$P\bar{1}$ (No. 2)	$P2_1/m$ (No. 11)	C2/c (No. 15)	$P2_1/n$ (No. 14)	Cc (No. 19)
$a(\AA)$	7.542(3)	9.623(3)	15.765(2)	12.602(4)	9.6379(8)	22.596(5)	11.184(3)	18.293(3)
b(A)	8.536(3)	14.176(4)	8.3050(10)	13.993(5)	14.1369(9)	8.570(2)	23.044(6)	10.2940(10)
c(A)	15.912(6)	13.315(4)	18.554(2)	17.467(6)	14.047(2)	23.910(5)	13.132(3)	14.626(4)
β (deg)	99.460(6)	99.136(5)	90.261(9)	82.048(5)	110.073(8)	91.232(4)	113.902(4)	105.891(7)
$V(A^3)$	972.8	1793	2429	2652	1798	4624	3094	2649
T(K)	153	153	100	153	100	153	153	100
D_c (g cm ⁻³)	1.927	1.244	1.502	1.392	1.849	1.977	1.684	1.76_1
Z	$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{4}$	$\overline{2}$	8	$\overline{4}$	$\overline{4}$
$\mu_{\rm Mo}$ (mm ⁻¹)	7.2	1.24	0.95	0.91	7.7	6.0	0.78	0.89
specimen \hat{m} (mm ³)	0.07×0.05 \times 0.03	0.35×0.25 \times 0.03	0.38×0.24 \times 0.12	0.28×0.17 $\times 0.06$	0.28×0.21 \times 0.055	0.08×0.07 \times 0.03	0.24×0.13 \times 0.12	0.28×0.26 \times 0.19
$T_{\rm min/max}$	0.57	0.60	0.85	0.57	0.37	0.58	0.85	0.93
$N_{\rm t}$	8815	16722	71975	22 7 25	9406	21 808	28 7 12	44 821
$2\theta_{\text{max}}$ (deg)	55	52.5	70	50	50	52.5	58	76
N	4298	3782	10 70 6	9126	3265	4690	7818	13 5 35
$R_{\rm int}$	0.052	0.096	0.036	0.075	0.071	0.064	0.045	0.030
N_{o} $(I > 2\sigma(I))$	4298	2516	8169	9126	2635	3385	6128	11410
R1	0.052	0.10	0.037	0.10	0.084	0.060	0.043	0.034
wR2	0.12	0.12	0.103	0.12	0.22	0.093	0.12	0.060
GOF	1.14	1.13	1.10	1.17	1.09	1.14	1.09	1.010

a α, γ = 102.563(6), 97.057(6)°. *b* α, γ = 74.662(5), 63.242(5)°.

2.9 Å (est). Compound **6** is described in two phases. In the better defined form, modeled as a dihydrate, the anions and solvent molecules are modeled with a considerable degree of disorder, forming a ribbon, seen at the center of the cell in projection down *b* contained to either side by the planes of the Cp* ligands, the bridging CH group of the cation interacting with the chloride of an adjacent cation $(Cl(1)\cdots C(10), H(10B)$ (*x*, 1 + *y*, *z*) 3.659(3), 2.7 Å (est). In the other phase, modeled as a dichloromethane hemisolvate, two ion pairs plus a disordered solvent molecule make up the asymmetric unit of the structure; one of the anions $(Cl(01/03))$, is also disordered. Contacts are found from $C(10)$, H(10B) of cation 1 to Cl(01) (\bar{x} , 1 - *y*, \bar{z}) 3.711(9), 2.8 (est) and from C(10), H(10A) to component Cl(02) (1 + x , *y*, *z*) (3.30(1), 2.7 Å (est)), the CH₂ group of cation 2 interacting more strongly with a solvent fragment.

In **15**, where the anion is triflate, the closest interactions arise from the oxygen atoms to peripheral pyrazole hydrogen atoms: $O(11)\cdots C$, $H(23) (1/2 + x, 1/2 + y, z) 3.20(1), 2.3$ (est); O(12) \cdots C, H(25) (1/2 - *x*, 1/2 + *y*, \bar{z}) 3.05(1), 2.2 Å (est). In **16** and **18**, unsurprisingly, the coordinated water molecules are found to interact strongly with the anions, triflates in both cases. In **16**, as noted above, these are straightforward (Figure 5): $O(1)$, $H(1B)\cdots O(11)$ 2.689(2), 1.8 (est); O(1), H(1A) \cdots O(22) 2.715(2), 1.8 Å (est)). In **18** (which is hydrated), a more extended network is found, the hydrogen atoms of the coordinated water molecule hydrogen bonding to other uncoordinated water molecule oxygen atoms: $O(1)$, $H(1a) \cdots O(2)$ 2.658(5), 1.7 (est); $O(1)$, $H(1b) \cdots O(3)$ 2.658(6), 1.8 Å (est). The hydrogen atoms of the latter $(O(2,3))$ in turn then hydrogen bond further afield, one to a residue assigned as a water molecule oxygen atom O(4) (for which no hydrogen atoms were located, although plausible interactions could be postulated with triflate oxygen atoms: $O(4) \cdots O(21)$, $O(21)$ (\bar{x} , \bar{y} , \bar{z}) 2.88(1) (\times 2) Å) and

the two triflate anions, one linking the residues into a polymer.

Experimental Section

Materials and Methods. All chemicals and reagents were of reagent grade quality and were used as received without further purification. All solvents were distilled prior to use. THF and light petroleum (310-333 K) were dried by refluxing over freshly cut sodium. Dichloromethane was freshly distilled from CaH₂. Other solvents were dried and purified by standard procedures. The samples were dried in vacuo to constant weight (293 K, 0.1 Torr). Elemental analyses were carried out in-house with a Fisons Instruments 1108 CHNSO-elemental analyzer. IR spectra from 4000 to 150 cm-¹ were recorded with a Perkin-Elmer System 2000 FT-IR instrument. 1H and 13C{1H} NMR solution spectra were recorded on a VXR-300 Varian spectrometer (300 for 1H and 75 MHz for ¹³C, respectively). One- and two-dimensional ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra were measured on Bruker DRX 400 spectrometers. Referencing is relative to TMS (1 H and 13 C), CCl₃F(19 F), and 85% H_3PO_4 ($31P$). NMR samples were prepared by dissolving a suitable amount of compound in 0.5 mL of solvent.

Syntheses. [Cp*Rh(L1)Cl][Cp*RhCl3] (1). A THF solution containing $[CP^*RhCl(\mu-Cl)]_2$ (0.182 g, 0.294 mmol) and L¹ (0.087 g, 0.588 mmol) was stirred for 48 h under N_2 at room temperature. The resulting orange precipitate was isolated by filtration and dried in vacuum. The residue obtained was washed with 5 mL of THF and recrystallized from 1:1 $CH_2Cl_2/$ light petroleum (40–60 °C) and shown to be compound **1** (0.200 g, 0.261 mmol, yield 89%). mp: 208-210 °C. Anal. Calcd for C₂₇H₃₈Cl₄Rh₂N₄: C, 42.32; H, 5.00; N, 7.31. Found: C, 41.96; H, 4.92; N, 7.27. IR (nujol, cm⁻¹): 3098w, 1768w, 1631s, 1508w ν(C--C, C--N), 450w, 398w, 277s *^ν*(Rh-Cl). 1H NMR (CD3OD, 293 K): *^δ* 1.57 (s, 15H, C*H3*Cp*), 1.64 (s, 15H, C H_{3Cp*}), 6.26, 6.87 (d, 2H_{gem}, C $H_2(pz)_2$, ²J = 14.3 Hz), 7.28 (s, 2H, *H4*), 7.48 (d, 2H, *H5*), 9.37 (s, 2H, *H*3). 1H NMR (DMSO, 293 K): *δ* 1.50 (s, 15H, C*H3*Cp*), 1.63 (s, 15H, C*H3*Cp*), 6.26, 6.68 (d, 2H, C H_2 , $^2J_{\text{gem}} = 14.3$ Hz), 7.15 (s, 2H, H_4), 7.63 (d, 2H, *H5*), 9.78 (s, 2H, *H3*). 13C NMR (CD3OD, 293 K): *δ*, 8.74 $(s, CH_{3Cp*}), 8.90$ $(s, CH_{3Cp*}), 57.61$ $(s, CH_2), 94.60$ $(dbr, C_{Cp*}),$

Figure 5. Projections of individual molecules (ions) of (a) **6a** and (b) **16**.

97.30 (d, C_{Cp^{*},} $J(^{103}Rh^{-13}C) = 8.5$ Hz), 121.36(s, C4), 131.81 (s, *C5*), 140.84 (s, *C3*).

[Cp*Rh(L1)Cl][Cl]'**H2O (2).** An acetone solution (10 mL) containing $[Cp*RhCl(\mu-Cl)]_2$ (0.182 g, 0.294 mmol) and L^1 (0.087 g, 0.588 mmol) was stirred for 6 h under N_2 at room temperature. The resulting orange precipitate was isolated by filtration and dried in vacuum. The residue obtained was washed with 5 mL of acetone and recrystallized from 1:1 CH₂Cl₂/light petroleum (40–60 °C) and shown to be compound **²** (0.095 g, 68% yield). mp: 217-²¹⁹ °C. Anal. Calcd for C₁₇H₂₅Cl₂N₄ORh: C, 42.32; H, 5.39; N, 11.00. Found: C, 42.69; H, 5.30; N, 11.19. IR (nujol, cm⁻¹): 3380wbr, 1530w, 1507w *ν*(C---C, C---N), 274s *ν*(Rh-Cl). ¹H NMR (CD₃-OD, 293 K): δ 1.74 (s, 15H, CH_{3Cp*}), 6.06, 6.98 (d, 2H_{gem}, CH₂, $^{2}J_{\text{gem}} = 14.7 \text{ Hz}$), 6.62 (t, 2H, *H4*), 7.92 (d, 2H, *H5*), 8.17 (d, 2H, *H3*). ¹H NMR (CD₃OD, 331K): δ 1.74 (s, 15H, CH_{3Cp*}), 6.06, 6.98 (d, 2H, C H_2 , $^2J_{\text{gem}} = 14.7$ Hz), 6.59 (t, 2H, H_2), 7.89 (d, 2H, *H5*), 8.14 (d, 2H, *H3*). ¹³C NMR (CDCl₃, 293 K): δ 9.70 (s, *C*H_{3Cp}*), 64.38 (s, *C*H₂), 97.04 (d, C_{Cp}*, *J*(¹⁰³Rh-¹³C) = 8.5 Hz), 108.45 (s, *C4*), 137.20 (s, *C5*), 144.29 (s, *C3*).

[Cp*Ir(L1)Cl][Cp*IrCl3] (3). Compound **3** (0.236 g, 0.249 mmol, yield 85%) was prepared following a procedure similar to

that reported for 1 using $[Cp*IrCl(\mu-Cl)]_2$ and L¹. mp: 258-260 °C. Anal. Calcd for $C_{27}H_{38}Cl_4N_4Ir_2$: C, 34.32; H, 4.05; N, 5.93. Found: C, 34.26; H, 4.24; N, 5.82. IR (nujol, cm⁻¹): 3114w, 1515w, *ν*(C—C, C—N), 279s *ν*(Ir-Cl). ¹H NMR (CDCl₃, 293 K): *δ* 1.66 (s, 15H, C*H3*Cp*), 1.71 (s, 15H, C*H3*Cp*), 5.68, 9.05 (d, 2H, C*H2*, ²*J*gem) 14.0 Hz), 6.46 (t, 2H, *H4*), 7.64 (d, 2H, *H5*), 9.37 (d, 2H, *H3*). 13C NMR (CDCl3, 293 K): *δ* 9.18 (s, *C*H3Cp*), 9.41 (s, CH_{3Cp*}), 63.22 (s, CH₂), 88.92 (s, C_{Cp*}), 108.80 (s, C4), 136.40 (s, *C5*), 144.35 (s, *C3*).

[Cp*Ir(L1)Cl][Cl]'**H2O (4).** Compound **⁴** (0.112 g, 0.198 mmol, yield 67%) was prepared following a procedure similar to that reported for 2 using $[Cp*IrCl(\mu-Cl)]_2$ and L¹. mp: 214-215 °C. Anal. Calcd for C₁₇H₂₅Cl₂IrN₄O: C, 36.17; H, 4.46; N, 9.92. Found: C, 35.75; H, 4.48; N, 9.65. IR (nujol, cm⁻¹): 3400br, 3111w, 1514 m, *ν*(C—C, C—N), 275s *ν*(Ir-Cl). ¹H NMR (CD3OD, 293 K): *δ* 1.71 (s, 15H, C*H3*Cp*), 5.88, 7.03 (d, 2H, C*H2*, $^{2}J_{\text{gem}}$ = 14.6 Hz), 6.65 (t, 2H, *H4*), 7.88 (d, 2H, *H5*), 8.15 (d, 2H, *H3*). 1H NMR (CDCl3, 293 K): *δ* 1.70 (s, 15H, C*H3*Cp*), 5.77, 9.07 (d, 2H, C H_2 , $^2J_{\text{gem}} = 14.6$ Hz), 6.48 (t, 2H, H_2), 7.65 (d, 2H, *H5*), 8.71 (d, 2H, *H3*). ¹³C NMR (CD₃OD, 293 K): δ 9.18 (s, *C*H_{3Cp}*), 64.31 (s, *C*H₂), 90.71 (s, *C_{Cp}**), 110.13 (s, *C4*), 135.92 (s, *C5*), 147.06 (s, *C3*). 13C NMR (CDCl3, 293 K): *δ* 9.38 (s, *C*H3Cp*), 62.89 (s, *C*H2),88.95 (s, CCp*), 108.85 (s, *C4*), 136.29 (s, *C5*), 144.49 (s, *C3*).

[Cp*Rh(L2)Cl][Cp*RhCl3] (5). Compound **5** (0.210 g, 0.279 mmol, yield 87%) was prepared following a procedure similar to that reported for 1 using $[Cp*RhCl(\mu-Cl)]_2$ and L^2 . mp: 280–281 °C. Anal. Calcd for C₃₁H₄₆Cl₄N₄Rh₂: C, 43.41; H, 5.41; N, 6.53. Found: C, 43.30; H, 5.31; N, 6.60. IR (nujol, cm⁻¹): 3400br, 1556s, *ν*(C—C, C—N), 279s *ν*(Rh–Cl). ¹H NMR (CDCl₃, 293 K): δ 1.63 (s, 15H, C*H3*Cp*), 1.76 (s, 15H, C*H3*Cp*), 2.41 (s, 6H, *5*-C*H*3), 2.62 $(s, 6H, 3\text{-}CH_3), 6.09, 7.06 \text{ (d, 2H, } CH_2, \frac{2J_{\text{gem}}}{4} = 14.3 \text{ Hz}), 5.99 \text{ (s, }$ 2H, *H4*). 13C NMR (CDCl3, 293 K): *δ* 9.56 (s, *C*H3Cp*), 10.12 (s, *C*H3Cp*), 12.54 (s, *5*-*C*H3), 15.12 (s, *3*-*C*H3), 59.77 (s, *C*H2), 94.10 (dbr, C_{Cp*}) , 97.03 $(d, C_{Cp*}$, J $(^{103}Rh-^{13}C) = 7.8$ Hz), 109.16 (s, *C4*), 144.61 (s, *C5*), 154.36 (s, *C3*).

 $[Cp*Rh(L^2)Cl][Cl] \cdot 2H_2O$ (6). Compound 6 (0.122 g, 0.222 mmol, yield 75%) was prepared following a procedure similar to that reported for 2 using $[Cp*RhCl(\mu-Cl)]_2$ and L^2 . mp: 281-283 °C. Anal. Calcd for $C_{21}H_{35}Cl_2N_4O_2Rh$: C, 45.92; H, 6.42; N, 10.20. Found: C, 45.64; H, 6.64; N, 10.24. IR (nujol, cm⁻¹): 3400sbr, 1560 m, 1531w, 1519w $ν$ (C--C, C--N), 274s $ν$ (Rh-Cl). ¹H NMR (CDCl3, 293 K): *δ* 1.73 (s, 15H, C*H3*Cp*), 2.38 (s, 6H, *5*-C*H*3), 2.58 (s, 6H, 3-CH₃), 6.06, 7.04 (d, 2H, CH₂, $^{2}J_{\text{gem}} = 16.6$ Hz), 5.98 (s, 2H, *H4*). 13C NMR (CDCl3, 293 K): *δ* 9.56 (s, *C*H3Cp*), 12.52 (s, 5-*C*H₃), 15.24 (s, 3-*C*H₃), 59.77 (s, *C*H₂), 96.97 (d, C_{Cp^{*}}, $J(^{103}Rh-^{13}C) = 8.3$ Hz), 109.16 (s, *C4*), 144.61 (s, *C5*), 154.36 (s, *C3*).

[Cp*Ir(L2)Cl][Cp*IrCl3] (7). Compound **7** (0.224 g, 0.223 mmol, yield 76%) was prepared following a procedure similar to that reported for 1 using $[Cp*IrCl(\mu-Cl)]_2$ and L². mp: 105-106. °C. Anal. Calcd for $C_{31}H_{46}Cl_4N_4Ir_2$: C, 35.93; H, 4.47; N, 5.41. Found: C, 36.29; H, 4.76; N, 5.53. IR (nujol, cm⁻¹): 3400br, 1556s, *ν*(C—C, C—N), 278s *ν*(Ir-Cl). ¹H NMR (CDCl₃, 293 K): δ 1.62 (s, 15H, C*H3*Cp*), 1.71 (s, 15H, C*H3*Cp*), 2.41 (s, 6H, *5*-C*H*3), 2.71 (s, 6H, 3-CH₃), 5.88, 7.20 (d, 2H, CH₂, $^{2}J_{\text{gem}} = 16.6$ Hz), 6.05 (s, 2H, *H*4). 13C NMR (CDCl3, 293 K): *δ* 9.07 (s, *C*H3Cp*), 9.83 (s, *C*H3Cp*), 12.58 (s, *5*-*C*H3), 15.04 (s, *5*-*C*H3), 61.90 (s, *C*H2), 96.20 (s, C_{Cp^{*}}), 88.83 (s, C_{Cp}^{*}), 109.01 (s, C4), 144.25 (s, C5), 154.03 (s, *C3*).

[Cp*Ir(L2)Cl][Cl]'**2H2O (8).** Compound **⁸** (0.160 g, 0.250 mmol, yield 85%) was prepared following a procedure similar to that reported for 2 using $[CP*IrCl(\mu-Cl)]_2$ and L². mp: $107-108$

°C (dec). Anal. Calcd for $C_{21}H_{35}N_4Cl_2O_2Ir$: C, 39.49; H, 5.52; N, 8.77. Found: C, 39.60; H, 5.50; N, 8.45. IR (nujol, cm-1): 3390br *ν*(O-H, H₂O), 3121w, 3083w *ν*(C-H), 1620br, 1556s *ν*(C-−C, C--N), 1281s, 1029s, 453w, 362w, 278s $ν$ (Ir-Cl). ¹H NMR (CDCl3, 293 K): *δ* 1.70 (s, 15H, C*H3*Cp*), 2.40 (s, 6H, *5*-C*H*3), 2.67(s, 6H, 3-CH₃), 5.90, 7.20 (d, 2H, CH₂, ² J_{gem} = 16.5 Hz), 6.05 (s, 2H, *H*4). 13C NMR (CDCl3, 293 K): *δ* 9.83 (s, *C*H3Cp*), 12.58 (s, *5*-*C*H3), 15.05 (s, *3*-*C*H3), 61.90 (s, *C*H2), 88.83 (s, CCp*), 109.02 (s, *C4*), 144.26 (s, *C5*), 154.04 (s, *C3*).

[Cp*Rh(L3)Cl][Cl] (9). A THF solution containing [Cp*RhCl- $(\mu$ -Cl)]₂ (0.182 g, 0.294 mmol) and L³ (0.103 g, 0.588 mmol) was stirred for 96 h at room temperature under N_2 . The resulting red precipitate was isolated by filtration and dried in vacuum. The residue obtained was washed with 5 mL of THF and recrystallized from 1:1 CH₂Cl₂/light petroleum (40-60 $^{\circ}$ C) and shown to be compound **⁹** (0.262 g, 0.538 mmol, yield 91%). mp: 237-²³⁹ °C. Anal. Calcd for C₁₉H₂₇Cl₂N₄Rh: C, 47.07; H, 5.61; N, 11.45. Found: C, 46.64; H, 5.44; N, 11.24. IR (nujol, cm⁻¹): 1560w, 1541w *ν*(C—C, C—N), 2.92s, 279s *ν*(Rh–Cl). ¹H NMR (CDCl₃, 293 K): *δ* 1.71 (s, 15H, C*H3*Cp*), 2.04 (s, 6H, *4*-C*H*3), 5.80, 8.57 (d, 2H_{gem}, CH₂(pz)₂, ²J = 14.2 Hz), 7.45 (s, 2H, H₅-pz), 8.42 (s, 2H, *H*3-pz). 13C NMR (CD2Cl2, 293 K): *δ* 9.16 (s, *4*-*C*H3), 9.65 (s, CH_{3Cp*}), 63.00 (s, CH₂), 96.80 (d, C_{Cp*}, $J(^{103}Rh^{-13}C) = 8.5$ Hz), 119.23 (s, *C4*), 135.33 (s, C*5*), 144.74 (s, *C3*).

[Cp*Ir(L3)Cl][Cl] (10). Compound **10** (0.288 g, 0.500 mmol, yield 85%) was prepared following a procedure similar to that reported for 4 using $[CP^*IrCl(\mu-Cl)]_2$ and L³. mp: 292-294 °C (dec). Anal. Calcd for C₁₉H₂₇Cl₂N₄Ir: C, 39.72; H, 4.74; N, 9.75. Found: C, 39.33; H, 4.82; N, 9.56. IR (nujol, cm⁻¹): 1569w *ν*(C—C, C—N), 311s, 300s, 257w, *ν*(Ir-Cl). ¹H NMR (CDCl₃, 293 K): *δ* 1.67 (s, 15H, C*H3*Cp*), 2.06 (s, 6H, *4*-C*H*3), 5.48, 9.06 (d, 2H, C*H*₂, ²*J*_{gem} = 13.8 Hz), 7.42 (s, 2H, *H5*), 8.44 (s, 2H, *H3*). ¹³C NMR (CD₂Cl₂, 293 K): *δ* 9.13 (s, *C*H_{3Cp*}), 31.13 (s, *4*-*C*H₃), 62.49 (s, CH2), 88.71 (s, CCp*), 119.23 (s, *C4*), 134.67 (s, C*5*), 144.24 (s, *C3*).

[Cp*Ir(L4)Cl][Cl] (11). Compound **11** (0.320 g, 0.560 mmol, yield 85%) was prepared following a procedure similar to that reported for 9 using $[CP^*IrCl(\mu-Cl)]_2$ and an excess of L⁴ (1:6). mp: 278-279 °C. Anal. Calcd for $C_{19}H_{27}Cl_{2}IrN_{4}$: C, 39.72; H, 4.74; N, 9.75. Found: C, 39.33; H, 4.72; N, 9.46. IR (nujol, cm-1): 1537w, 1509sw *ν*(C—C, C—N), 367s, 245s *ν*(Ir-Cl). ¹H NMR (CDCl3, 293 K): *δ* 1.67 (s, 15H, C*H3*Cp*), 2.22, 2.87 (sbr, 6H, CH3gem), 6.59 (sbr, 2H, *H4*), 7.70 (m, 2H, *H5*), 8.41 (sbr, 2H, *H3*). 13C NMR (CDCl3, 293 K): *δ* 9.24 (s, *C*H3Cp*), 27.60 (s, C(*C*H3)2), 79.93 (s, CH2), 89.18 (s, CCp*), 109.27 (s, *C4*), 133.77 (s, C*5*), 147.03 (s, *C3*).

 $[Cp*Rh(L¹)CI][CF₃SO₃] $\cdot 2H₂O$ (12). A $CH₂Cl₂$ solution con$ taining $[Cp*RhCl(\mu-Cl)]_2$ (0.182 g, 0.294 mmol) and L³ (0.087 g, 0.588 mmol) and $AgCF₃SO₃$ (0.151 g, 0.588 mmol) was stirred at room temperature under N_2 . After 2 h, a colorless precipitate formed, which was isolated by filtration and shown to be AgCl. The clear orange solution obtained was evaporated under vacuum, and the residue was washed with light petroleum and shown to be compound **12** (0.270 g, 0.444 mmol, yield 75%). It was recrystallized from CH₂Cl₂/light petroleum (40-60 °C). mp: 251-252 °C. Anal. Calcd for C₁₈H₂₇ClF₃N₄O₅RhS: C, 35.63; H, 4.48; N, 9.23. Found: C, 36.05; H, 4.33; N, 9.34. IR (nujol, cm⁻¹): 3535br *ν*(H₂O), 3117s *ν*(CF₃SO₃), 1524w *ν*(C—C, C—N), 1266s *ν*(CF₃-SO₃), 279s *ν*(Rh-Cl). ¹H NMR (CD₂Cl₂, 293 K): δ 1.58 (s, 4H, H₂O), 1.73 (s, 15H, CH_{3Cp*}), 6.03, 7.34 (d, 2H, CH₂, ² J_{gem} = 14.6 Hz), 6.52 (t, 2H, *H4*), 7.75 (d, 2H, *H5*), 8.27 (d, 2H, *H3*). 13C NMR (CDCl₃, 293 K): *δ* 9.25 (s, *C*H_{3Cp}*), 62.77 (s, *C*H₂), 97.03 (d, C_{Cp}*, $J(^{103}Rh-^{13}C) = 8.2$ Hz), 108.92 (s, *C4*), 135.57 (s, *C5*), 145.64 (s, *C3*).

[Cp*Rh(L2)Cl][CF3SO3] (13). Compound **13** (0.262 g, 0.442 mmol, yield 75%) was prepared following a procedure similar to that reported for 12 using $[CP^*RhCl(\mu-Cl)]_2$, L^2 , and $AgCF_3SO_3$. Anal. Calcd for $C_{22}H_{31}F_3N_4O_3RhS$: C, 44.68; H, 5.28; N, 9.47. Found: C, 44.60; H, 5.14; N, 9.22. IR (nujol, cm⁻¹): 3535br *ν*(H₂O), 3114s *ν*(CF₃SO₃), 1560 m, 1531w, 1519w, *ν*(C—C, C---N), 270s *ν*(Rh-Cl). ¹H NMR (CDCl₃, 293 K): δ 1.76 (s, 15H, C*H3*Cp*), 2.43 (s, 6H, *5*-C*H*3), 2.50 (s, 6H, *3*-C*H*3), 5.95, 6.70 (d, 2H, C H_2 , $^2J_{\text{gem}} = 15.8$ Hz), 6.03 (s, 2H, *H4*).

[Cp*Rh(L4)Cl][CF3SO3] (14). Compound **14** (0.232 g, 0.490 mmol, yield 70%) was prepared following a procedure similar to that reported for 12 using $[CP^*RhCl(\mu-Cl)]_2$, L⁴, and AgCF₃SO₃. Anal. Calcd for C₂₀H₂₇F₃N₄O₃RhS: C, 42.64; H, 4.83; N, 9.94. Found: C, 42.33; H, 5.04; N, 9.64. IR (nujol, cm⁻¹): 3114s *ν*(CF₃-SO₃), 1536w *ν*(C—C, C—N), 272s *ν*(Rh–Cl). ¹H NMR (CD₂Cl₂, 293 K): δ 1.75 (s, 15H, CH_{3Cp*}), 2.25, 2.58 (s, 6H, CH_{3gem}), 6.59 (t, 2H, *H4*), 7.84 (d, 2H, *H5*), 8.03 (d, 2H, *H3*). 13C NMR (CD2- Cl2, 293 K): *δ* 9.24 (s, *C*H3Cp*), 26.19, 29.44 (s, C(*C*H3)2), 77.10 (S, CH_2) , 97.47 (d, C_{Cp^*} , $J(^{103}Rh^{-13}C) = 8.5$ Hz), 108.56 (s, *C4*), 132.43 (s, C*5*), 147.50 (s, *C3*).

[Cp*Ir(L4)Cl][CF3SO3] (15). Compound **15** (0.220 g, 0.318 mmol, yield 54%) was prepared following a procedure similar to that reported for 12 using $[CP^*IrCl(\mu-Cl)]_2$, L⁴, and AgCF₃SO₃. Anal. Calcd for C₂₀H₂₇ClF₃IrN₄O₃S: C, 34.91; H, 3.95; N, 8.14. Found: C, 34.47; H, 3.80; N, 7.89. IR (nujol, cm⁻¹): 3121m, *ν*(CF₃-SO₃), 1511sh *ν*(C--C, C--N), 275s *ν*(Ir-Cl). ¹H NMR (CD₂Cl₂, 293 K): δ 1.68 (s, 15H, CH_{3Cp*}), 2.18, 2.64 (s, 6H, CH_{3gem}), 6.64 (t, 2H, *H4*), 7.78 (d, 2H, *H5*), 8.09 (d, 2H, *H3*). 13C NMR (CD2- Cl2, 293 K): *δ* 9.04 (s, *C*H3Cp*), 26.45, 28.65 (s, C(*C*H3)2), 78.24 (s, CH₂), 89.34 (s, C_{Cp^{*})}, 109.09 (s, C4), 132.40 (s, C5), 147.64 (s, *C3*).

 $[Cp*Rh(L^1)(H_2O)][CF_3SO_3]_2$ (16). A CH_2Cl_2 solution containing [Cp*RhCl(*µ*-Cl)]2 (0.077 g, 0.125 mmol), L1 (0.037 g, 0.250 mmol), and $AgCF_3SO_3$ (0.120 g, 0.500 mmol) was stirred at room temperature under N_2 . After 2 h, the precipitate formed was isolated by filtration and washed with acetone. The orange solution obtained was evaporated under vacuum, and the residue was washed with light petroleum and shown to be compound **16** (0.090 g, 0.128 mmol, 51%). It was recrystallized from $CH_2Cl_2/light$ petroleum (40-60 °C). Anal. Calcd for C₁₉H₂₅F₆N₄O₇RhS₂: C, 32.49; H, 3.59; N, 7.98. Found: C, 32.60; H, 3.43; N, 7.34. ¹H NMR ((CD₃)₂CO, 293 K): *δ* 1.91 (s, 15H, C*H3*Cp*), 6.72 (t, 2H, *H4*), 6.70 (br, 2H, CH₂), 8.20 (d, 2H, *H5*), 8.33 (d, 2H, *H3*). ¹H NMR ((CD₃)₂CO, 323 K): *δ* 1.91 (s, 15H, C*H3*Cp*), 6.72 (t, 2H, *H4*), 6.70 (sbr, 2H, CH2), 8.20 (d, 2H, *H5*), 8.34 (d, 2H, *H3*). 1H NMR (CD3)2CO, 213 K): *δ* 1.92 (s, 15H, CH_{3Cp*}), 6.26, 7.16 (d, 2H, CH₂, ²*J*_{gem} = 15.1 Hz), 6.67 (d, 2H, *H5*), 6.76 (t, 2H, *H4*), 8.28 (d, 2H, *H3*). 13C NMR ((CD₃)₂CO, 293 K): *δ* 9.40 (s, *CH*_{3Cp^{*}), 63.87 (s, *CH*₂), 99.60} $(d, C_{Cp^*}, J(^{103}Rh-^{13}C) = 9.4 Hz$, 110.10 (s, *C4*), 137.30 (s, *C5*), 146.37 (s, *C3*).

[Cp*Ir(L2)(H2O)][CF3SO3]2 (17). Compound **17** (0.123 g, 0.145 mmol, 58%) was prepared following a procedure similar to that reported for **16** using $[Cp*IrCl(\mu-Cl)]_2$, L^2 , and $AgCF_3SO_3$. mp: 219-220 °C. Anal. Calcd for C₂₃H₃₃F₆N₄O₇IrS₂: C, 32.58; H, 3.92; N, 6.61. Found: C, 32.40; H, 3.75; N, 6.55. IR (nujol, cm⁻¹): 3200br, 1605s, 1562s ν(C---C, C---N), 572m, 515s, 462w. ¹H NMR ((CD3)2CO, 293 K): *δ* 1.85 (s, 15H, C*H3*Cp*), 2.48 (s, 6H, *5*-C*H*3), 2.61 (s, 6H, 3-CH₃), 5.91, 6.70 (d, 2H, CH₂, $^{2}J_{\text{gem}} = 16.0$ Hz), 6.41 (s, 2H, *H*4). 1H NMR (D2O, 293 K): *δ* 1.50 (s, 15H, C*H3*Cp*), 2.21 (s, 6H, *5*-C*H*3), 2.34 (s, 6H, *3*-C*H*3), 5.43, 6.25 (d, 2H, C*H2*,

(η *⁵-C₅Me₅)-Rhodium and -Iridium Derivatives*

 $^{2}J_{\text{gem}}$ = 15.6 Hz), 6.15 (s, 2H, *H*4). ¹³C NMR ((CD₃)₂CO, 293 K): *δ* 9.69 (s, *C*H3Cp*), 11.43 (s, *5*-*C*H3), 14.72 (s, *3*-*C*H3), 58.84 (s, *C*H₂), 90.39 (s, C_{Cp^{*})}, 110.12 (s, C4), 145.49 (s, C5), 154.38 (s, *C3*).

[Cp*Rh(L4)(H2O)][CF3SO3]2'**3H2O (18).** Compound **¹⁸** (0.220 g, 0.318 mmol, yield 54%) was prepared following a procedure similar to that reported for **16** using $[Cp*RhCl(\mu-Cl)]_2$ (0.182 g, 0.294 mmol), L^4 (0.087 g, 0.588 mmol), and AgCF₃SO₃ (0.302 g, 0.588 mmol). Anal. Calcd for $C_{21}H_{35}F_6N_4O_{10}RhS_2$: C, 32.14; H, 4.50; N, 7.14. Found: C, 32.45; H, 4.44; N, 7.02. IR (nujol, cm-1): 3500br, 3143s *ν*(CF₃SO₃), 1538w *ν*(C--C, C--N). ¹H NMR

(CD3)2CO, 293 K): *δ* 1.92 (s, 15H, C*H3*Cp*), 2.52 (sbr, 6H, CH3gem), 6.76 (t, 2H, *H4*), 8.38 (d, 2H, *H5*), 8.49 (d, 2H, *H3*). 1H NMR (CD3)2CO, 253 K): *δ* 1.92 (s, 15H, C*H3*Cp*), 2.31, 2.73 (s, 6H, CH3gem), 6.79 (t, 2H, *H4*), 8.37 (d, 2H, *H5*), 8.55 (d, 2H, *H3*). 1H NMR (CD₃)₂CO, 213 K): δ 1.92 (s, 15H, CH_{3Cp^{*})}, 2.29, 2.72 (s, 6H, CH3gem), 5.95 (d, H2O), 6.81 (t, 2H, *H4*), 8.35 (d, 2H, *H5*), 8.57 (d, 2H, *H3*). 13C NMR ((CD3)2CO, 293 K): *δ* 9.45 (s, *C*H3Cp*), 78.44 (s, CH₂), 99.45 (d, C_{Cp^{*},} $J(^{103}Rh^{-13}C) = 9.1$ Hz), 109.35 (s, *C4*), 134.50 (s, C*5*), 147.55 (s, *C3*).

 $[Cp*Ir(L⁴)(H₂O)][CF₃SO₃]₂ (19)$. Compound 19 (0.130 g, 0.158) mmol, yield 63%) was prepared following a procedure similar to that reported for **16** using $[CP^*IrCl(\mu-Cl)]_2$, L^4 , and $AgCF_3SO_3$. mp: $126-128$ °C (dec). Anal. Calcd for $C_{21}H_{29}F_6N_4O_7IrS_2$: C, 30.77; H, 3.57; N, 6.83. Found: C, 30.95; H, 3.43; N, 6.62. IR (nujol, cm⁻¹): 3500s, 3142m, 1665m, 1613s, ν(C—C, C—N), 576m, 516m, 458w. 1H NMR ((CD3)2CO, 293 K): *δ* 1.82 (s, 15H, C*H3*Cp*), 2.75 (sbr, 6H, CH3gem), 6.80 (t, 2H, *H4*), 8.34 (d, 2H, *H5*), 8.55 (d, 2H, *H3*). 1H NMR (D2O, 293 K): *δ* 1.51 (s, 15H, C*H3*Cp*), 1.93, 2.45 (s, 6H, CH3gem), 6.57 (t, 2H, *H4*), 7.94 (d, 2H, *H5*), 8.15 (d, 2H, *H3*). 13C NMR ((CD3)2CO, 293 K): *δ* 9.28 (s, *C*H3Cp*), 79.76 (s, CH2), 90.69 (s, CCp*), 110.16 (s, *C4*), 134.95 (s, C*5*), 148.32 (s, *C3*).

[Cp*Rh(L1)(H2O)][ClO4]2 (20). Compound **20** (0.316 g, 0.520 mmol, yield 88%) was prepared following a procedure similar to that reported for 16 using $[CP^*RhCl(\mu-Cl)]_2$, L¹, and AgCF₃SO₃. Anal. Calcd for C₁₇H₂₉Cl₂N₄O₉Rh: C, 33.66; H, 4.82; N, 9.24. Found: C, 33.20; H, 4.63; N, 9.14. IR (nujol, cm⁻¹): 1521w, *ν*(C--C, C--N), 1089s, 622m *ν*(ClO₄). ¹H NMR ((CD₃)₂CO, 293 K): *δ* 1.90 (s, 15H, C*H3*Cp*), 6.75 (t, 2H, *H4*), 6.79 (br, 2H, CH2), 8.28 (d, 2H, *H5*), 8.37 (d, 2H, *H3*). 1H NMR ((CD3)2CO, 323 K): *δ* 1.90 (s, 15H, C*H3*Cp*), 6.75 (t, 2H, *H4*), 6.82 (sbr, 2H, CH2), 8.28 (d, 2H, *H5*), 8.37 (d, 2H, *H3*). ¹H NMR (CD₃)₂CO, 213 K): *δ* 1.92 (s, 15H, C*H_{3Cp}**), 6.28, 7.18 (d, 2H, C*H*₂, ²*J*_{gem} = 15.0 Hz), 6.69 (d, 2H, *H5*), 6.78 (t, 2H, *H4*), 8.30 (d, 2H, *H3*). 13C NMR ((CD3)2CO, 293 K): *δ* 9.44 (s, *C*H3Cp*), 63.96 (s, *C*H2), 99.64 (d, $C_{\text{Cp*}}$, $J(^{103}\text{Rh}-^{13}\text{C}) = 9.1$ Hz), 110.29 (s, C4), 137.04 (s, C5), 146.27 (s, *C3*).

 $[Cp*Rh(L²)(PPh₃)][Cl][SO₃CF₃]$ (21). A $CH₂Cl₂$ solution containing **13** (0.080 g, 0.133 mmol) and PPh₃ (0.035 g, 0.133 mmol) was stirred at room temperature under N_2 . After 6 h, the solution was isolated by filtration, and the orange solution obtained was evaporated under vacuum; the product was shown to be compound **²¹** (0.064 g, 0.072 mmol, yield 54%). mp: 139-¹⁴⁰ °C. Anal. Calcd for $C_{40}H_{46}CIF_3N_4O_3PRhS$: C, 54.03; H, 5.21; N, 6.30. Found: C, 54.44; H, 5.60; N, 5.79. IR (nujol, cm⁻¹): 1521w *ν*(C—C, C—N), 1089s, 622m *ν*(ClO₄). ¹H NMR (CDCl₃, 273 K): *δ* 1.71 (s, 15H, C*H3*Cp*), 2.42 (s, 6H, *5*-C*H*3), 2.49 (s, 6H, *3*-C*H*3), 5.99, 6.70 (d, 2H, CH₂, ²*J*_{gem} = 15.6 Hz), 6.03 (s, 2H, *H*4) 7.32 (m, 15H, PPh3). 13C NMR (CDCl3, 293 K): *δ* 9.83 (s, *C*H3Cp*), 11.57 (s, 5-*C*H₃), 15.25 (s, 3-*C*H₃), 58.05 (s, *C*H₂), 97.09 (d, C_{Cp^{*}}, $J(^{103}Rh-^{13}C) = 8.3$ Hz), 109.53 (s, *C4*), 128.75 (d, *Cm*), 129.13 (d, *Cp*), 133.90 (d, *Co*), 134.90 (d, *Ci*), 144.00 (s, *C5*), 155.04 (s, *C3*). ³¹P NMR (CDCl₃, 293 K): δ 30.96 (d,¹J(³¹P-Rh) = 144.0 Hz).

NOE Measurements. The 1H-NOESY30 NMR experiments were acquired by the standard three-pulse sequence or by the PFG version.³¹ Two-dimensional ¹⁹F,¹H-HOESY NMR experiments were acquired using the standard four-pulse sequence or the modified version.32 The number of transients and the number of data points were chosen according to the sample concentration and the desired final digital resolution. Semiquantitative spectra were acquired using a 1 s relaxation delay and 800 ms mixing times.

PGSE Experiments. 1H- and 19F-PGSE NMR measurements were performed using the standard stimulated echo pulse sequence³³ on a Bruker AVANCE DRX 400 spectrometer equipped with a GREAT 1/10 gradient unit and a QNP probe with a Z-gradient coil at 296 K without spinning. Me of the Cp* and fluorine resonances were usually investigated. The dependence of the resonance intensity (*I*) on a constant waiting time and on a varied gradient strength (*G*) is described by eq 3

$$
\ln \frac{I}{I_0} = -(\gamma \delta)^2 D_t \left(\Delta - \frac{\delta}{3}\right) G^2 \tag{3}
$$

where $I =$ intensity of the observed spin echo, $I_0 =$ intensity of the spin echo without gradients, $D_t =$ diffusion coefficient, $\Delta =$ delay between the midpoints of the gradients, δ = length of the gradient pulse, and γ = magnetogyric ratio.

The shape of the gradients was rectangular; their duration (*δ*) was $4-5$ ms, and their strength (G) was varied during the experiments. All the spectra were acquired using 32 K points with a spectral width of 5000 Hz and were processed with a line broadening of 1.0 Hz. The semilogarithmic plots of $ln(I/I_0)$ versus *G*² were fitted using a standard linear regression algorithm; the *R* factor was always higher than 0.99. Different values of ∆, nt (number of transients), and number of different gradient strengths (*G*) were used for different samples.

PGSE data were treated¹⁸ taking advantage of an internal standard (TMSS [tetrakis-(trimethylsilyl)silane], the dimension of which is known from the literature³⁴), and introducing into the Stokes-Einstein equation the semiempirical estimation of the *c* factor that can be obtained through eq 4^{35} derived from the microfriction theory proposed by Wirtz and co-workers,³⁶ in which c is expressed as a function of the solute to solvent ratio of radii.

$$
c = \frac{6}{\left[1 + 0.695 \left(\frac{r_{\text{solv}}}{r_{\text{H}}}\right)^{2.234}\right]}
$$
(4)

From the Stokes-Einstein equation $D_t = kT/c\pi\eta r_H$ and eq 4, the ratio of the D_t values for the standard TMSS (st) and sample (sa), which is also equal to the ratio of the slopes (*m*) of the straight lines from the plot of $log(I/I_0)$ versus G^2 (eq 3), is

- (30) Jeener, J.; Meier, B. H.; Bachmann, P.; Ernst, R. R. *J. Chem. Phys.* **1979**, *71*, 4546.
- (31) Wagner, R.; Berger, S. *J. Magn. Reson. A* **1996**, *123*, 119.
- (32) Lix, B.; Sönnichsen, F. D.; Sykes, B. D. *J. Magn. Reson. A* 1996, *121*, 83.
- (33) Stilbs, P. *Prog. Nucl. Magn. Reson. Spectrosc.* **1987**, *19*, 1.
- (34) Dinnebier, R. E.; Dollase, W. A.; Helluy, X.; Kümmerlen, J.; Sebald, A.; Schmidt, M. U.; Pagola, S.; Stephens, P. W.; van Smaalen, S. *Acta Crystallogr.* **1999**, *B55*, 1014.
- (35) (a) Chen, H.-C.; Chen, S.-H. *J. Phys. Chem.* **1984**, *88*, 5118. (b) Espinosa, P. J.; de la Torre, J. G. *J. Phys. Chem.* **1987**, *91*, 3612.
- (36) (a) Gierer, A.; Wirtz, K. *Z. Naturforsch. A* **1953**, *8*, 522. (b) Spernol, A.; Wirtz, K. *Z. Naturforsch. A* **1953**, *8*, 532.

$$
\frac{m^{\text{sa}}}{m^{\text{st}}} = \frac{D_t^{\text{sa}}}{D_t^{\text{st}}} = \frac{c^{\text{st}} r_H^{\text{st}}}{c^{\text{sa}} r_H^{\text{sa}}} = f(r_{\text{solv}} r_H^{\text{sa}} r_H^{\text{st}})
$$
(5)

Equation 5 circumvents the dependence of the D_t values on the temperature, solution viscosity (which changes when the concentration of the sample is varied), and gradient calibration, and allows an accurate value of the hydrodynamic radius¹⁸ to be obtained.

The uncertainty of the measurements was estimated by determining the standard deviation of *m* by performing experiments with different ∆ values. The standard propagation of error analysis gave a standard deviation of approximately 3-4% in hydrodynamic radii and 10-15% in hydrodynamic volumes. The Van der Waals volume $(V_{\text{vdW}})^{37}$ was computed using the software package WebLab ViewerLite 4.0.

Structure Determinations. Full spheres of CCD area-detector diffractometer data were measured (*ω*-scans, monochromatic Mo K α radiation, $\lambda = 0.7107_3$ Å) yielding N_{total} reflections; these were merged to *N* unique (R_{int} cited) after "empirical"/multiscan absorption correction, N_0 with $I \geq 2\sigma(I)$ being considered to be observed. All reflections were used in the full-matrix least-squares refinements on *F*2, refining anisotropic displacement parameter forms for the non-hydrogen atoms, hydrogen atoms being included with parameters derivative of a riding model. Reflection weights were $(\sigma^2(F^2))$ $+(n_wP)^2 + n_wP^{-1}$ $(P = (F_o^2 + 2F_c^2)/3)$. Neutral atom complex
scattering factors were employed within the Xtal 3.7 and SHEI XI. scattering factors were employed within the Xtal 3.7 and SHELXL 97 program systems.38,39 Pertinent results are given in the tables and figures, the latter showing 50% probability amplitude envelopes for the non-hydrogen atoms, hydrogen atoms having arbitrary radii of 0.1 Å.

(Note: Initial studies on 5 , 7 , and 6 ⁻¹/₂CH₂Cl₂ resulted in inferior determinations; further attempts on recrystallized samples resulted in no improvement for **⁵**, but for **⁶**, a new form was defined, **⁶**' 2H2O, yielding a superior result.)

Crystal/Refinement Data. The crystal and refinement data are given in Table 3.

⁴'**H2O.** A difference map residue was modeled and refined as a water molecule oxygen atom. Reflection weights were $(\sigma^2(F^2)$ + $33F^2$ ⁻¹.

⁶'**2H2O.** Difference map residues were modeled in terms of major and minor components of uncoordinated chlorine atoms and oxygen atoms in concert, associated hydrogen atoms not being located, component site occupancies refining to 0.761(4) and complement.

⁶'**1/2CH2Cl2.** The solvent component was modeled as disordered $CH₂Cl₂$, geometries constrained to estimated values, site occupancies 0.5.

7. The compound is quasi-isomorphous with **5**. In **5**, the cp rings were modeled as disordered over two sets of sites; in the present, such disorder was not resolvable, although refinement of the atoms as single components resulted in unacceptable ellipsoids with the isotropic forms ultimately being adopted. Attempted refinement in lower symmetry in both cases was unfruitful.

15. Reflections weight were $(\sigma^2(F^2) + 193F^2)^{-1}$.

16. "Friedel" data were preserved distinct; x_{abs} refined to $0.00(4)$.

18[']**3H₂O.** Difference map residues were modeled as water molecule oxygen atoms. No associated hydrogen atoms were located. Reflection weights were $(\sigma^2(F^2) + 33F^2)^{-1}$.

Acknowledgment. Support from the Universities of Camerino, Perugia, and Western Australia is gratefully acknowledged. This work has been partially supported by the Fondazione CARIMA). A.M. and D.Z. thank the Ministero dell'Istruzione, dell'Universita` e della Ricerca (MIUR, Rome, Italy), Programma di Rilevante Interesse Nazionale, Cofinanziamento 2004-2005 for support.

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of **4**, **5**, **6** (two forms), **7**, **15**, **16** and **18**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC061928G

⁽³⁷⁾ Bondi, A. *J. Phys. Chem.* **1964**, *68*, 441.

⁽³⁸⁾ Hall, S. R., du Boulay, D. J., Olthof-Hazekamp, R., Eds. *The Xtal 3.7 System*; University of Western Australia: Crawley, Australia, 2001.

⁽³⁹⁾ Sheldrick, G. M. *SHELXL-97*, *A Program for Crystal Structure Refinement*; University of Göttingen: Göttingen, Germany, 1997.